TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1.0	INTRODUCTION	1-1
1.1	CREATION AND AUTHORITY OF THE DRAINAGE DISTRICT	1-2
1.2	PURPOSE	1-6
1.3	SCOPE	1-7
1.4	DRAINAGE POLICY	1-8
2.0	HYDROLOGY	2-1
2.1	GENERAL	2-1
2.2	RAINFALL – RUNOFF COMPUTATIONS USING HEC-HMS	2-3
2.2.1	Design Storm Rainfall	2-3
2.2.2	Design Storm Losses	2-4
2.2.3	Design Storm Runoff	2-6
2.2.3.1	General	2-6
2.2.3.2	Adjustment for Ponding	2-7
2.2.4	Procedure for Developing a Design Runoff Hydrograph	2-8
2.2.5	Flood Routing	2-12
2.3	DRAINAGE AREA-DISCHARGE CURVES	2-12
2.4	RATIONAL METHOD	2-13
2.4.1	Runoff Coefficient (C)	2-14
2.4.2	Rainfall Intensity (i)	2-15
2.4.3	<u>Drainage Area (A)</u>	2-17
2.5	HYDROGRAPH DEVELOPMENT FOR SMALL WATERSHEDS	2-17
3.0	OPEN CHANNEL FLOW	3-1
3.1	GENERAL	3-1
3.2	OPEN CHANNEL HYDRAULICS	3-1
3.2.1	Steady or Unsteady Flow	3-2
3.2.2	<u>Uniform Flow</u>	3-2
3.2.3	<u>Varied Flow</u>	3-3
3.2.4	Subcritical or Supercritical Flow	3-3
3.2.5	Critical Depth	3-3

<u>Section</u>		<u>Page</u>
3.2.6	Manning's Equation	3-4
3.2.6.1	Manning's "n" Value	3-5
3.3	CHANNEL DESIGN	3-6
3.3.1	Design Frequency	3-6
3.3.2	Required Analysis	3-6
3.3.3	<u>Design Considerations</u>	3-8
3.3.3.1	Optimal Design Flow Characteristics	3-8
3.3.3.2	Optimal Channel Configuration Characteristics	3-9
3.3.4	Minimum Requirements for Channel Design	3-11
3.3.4.1	Grass-Lined Channels	3-11
3.3.4.2	Concrete-Lined Trapezoidal Channels	3-12
3.3.4.3	Rectangular Concrete Pilot Channels	3-13
3.4	EROSION	3-14
3.4.1	Minimum Erosion Protection Requirements	3-15
3.4.2	Structural Erosion Controls	3-16
3.4.2.1	Riprap	3-16
3.4.2.2	Concrete Slope Paving	3-16
3.4.2.3	Backslope Drainage Systems	3-16
3.4.2.4	Slopes Drops	3-18
3.4.2.5	Baffled Chutes	3-18
3.5	WATER SURFACE PROFILES	3-20
3.5.1	<u>Uniform Flow</u>	3-20
3.5.2	Gradually Varied Flow	3-20
3.5.3	Rapidly Varied Flow	3-22
3.5.4	Energy Losses	3-22
3.5.4.1	Expansions and Contractions	3-22
3.5.4.2	Bends	3-23
3.5.4.3	Bridges	3-24
3.6	SUPERCRITICAL TRANSITIONS	3-24
3.7	RIGHT-OF-WAY	3-24
3.8	UTILITY LINE CROSSINGS	3-25

<u>Section</u>		<u>Page</u>
4.0	CULVERTS AND BRIDGES	4-1
4.1	GENERAL	4-1
4.2	CULVERTS	4-1
4.2.1	Design Frequency	4-1
4.2.2	Culvert Alignment	4-1
4.2.3	Culvert Length	4-2
4.2.4	<u>Headwalls</u>	4-2
4.2.5	Minimum Culvert Sizes	4-2
4.2.6	Manning's "n" Values	4-2
4.2.7	<u>Erosion</u>	4-3
4.2.8	Structural Requirements	4-3
4.3	CULVERT HYDRAULIC DESIGN	4-4
4.3.1	Culvert Design Procedure	4-4
4.3.2	<u>Culvert Flow Types</u>	4-5
4.3.3	Headwater Depth	4-5
4.3.4	Tailwater Depth	4-5
4.3.5	Inlet-Controlled Flow	4-6
4.3.6	Outlet-Controlled Flow	4-6
4.3.7	Conditions at Entrance	4-9
4.3.8	Step-by-Step Design Procedure	4-9
4.4	BRIDGES	4-14
4.4.1	Bridge Design Considerations	4-14
4.4.1.1	Bents and Abutments	4-14
4.4.1.2	Interim Channels	4-15
4.4.1.3	Erosion Protection	4-15
4.5	HEC-RAS	4-15
5.0	STORM SEWERS AND OVERLAND FLOW	5-1
5.1	GENERAL	5-1
5.2	RUNOFF ANALYSIS	5-1
5.2.1	Frequency Considerations	5-1
5.2.2	General Design Guidelines	5-2
5.2.3	Specific Design Flow Frequency Criteria	5-3

<u>Section</u>		<u>Page</u>
5.3	STORM SEWERS	5-4
5.3.1	Design Criteria	5-4
5.3.2	General Design Methodology	5-7
5.3.3	<u>Head Losses</u>	5-7
5.3.3.1	Head Losses at Structures	5-7
5.3.3.2	Entrance Losses	5-8
5.3.4	<u>Manholes</u>	5-8
5.3.5	<u>Inlets</u>	5-8
5.3.5.1	Inlet Capacity	5-8
5.3.5.2	Inlet Spacing	5-9
5.4	STREET DRAINAGE OF STORM SEWER OVERFLOW	5-9
5.4.1	Land Plan and Street Layout	5-9
5.4.2	Conveyance of Surface Flow to Primary Channels	5-10
5.4.3	Design Procedures for Pipe Outlet	5-11
5.4.4	Design Procedures for Extreme Event Swale	5-14
5.4.5	Roadside Ditch Drainage	5-15
5.4.5.1	Preliminary Approval	5-15
5.4.5.2	Design Criteria	5-15
6.0	STORM RUNOFF STORAGE	6-1
6.1	GENERAL	6-1
6.2	MASTER PLANS	6-1
6.3	STORAGE CLASSIFICATION	6-2
6.3.1	Retention Storage	6-2
6.3.2	<u>Detention Storage</u>	6-2
6.3.3	On-line Storage	6-2
6.3.4	Off-line Storage	6-2
6.4	DESIGN PROCEDURES	6-3
6.4.1	Design for Drainage Areas <50 Acres	6-3
6.4.2	Design for Drainage ≥50 Acres and <640 Acres	6-5
6.4.3	Design for Drainage Areas ≥640 Acres	6-5
6.4.4	Design Tailwater Depth	6-6
6.4.5	Release Rates / Maximum Allowable Discharge	6-6

Section		<u>Page</u>
6.4.6	Downstream Impact Analysis Requirements	6-6
6.4.7	Final Sizing of Pond Storage and Outflow Structures	6-7
6.4.8	Storm Sewer Hydraulic Gradients	6-7
6.4.9	Allowances for Extreme Storm Events	6-7
6.4.10	Erosion Controls	6-8
6.5	MULTIPURPOSE LAND USE	6-9
6.5.1	Approval of Private and Dual-Use Facilities	6-10
6.5.2	Maintenance	6-10
6.6	PUMP DETENTION	6-12
6.7	GEOTECHNICAL INVESTIGATION	6-13
6.8	GENERAL REQUIREMENTS FOR DETENTION POND CONSTRUCTION	6-13
6.9	STORM WATER QUALITY BMP AND PHASE II NPDES PERMIT	6-14
6.10	LOW IMPACT DEVELOPMENT	6-15
7.0	LEVEED AREAS	7-1
7.1	INTERNAL DRAINAGE SYSTEM	7-1
7.2	LEVEE SYSTEM	7-1
7.2.1	Frequency Criteria	7-1
7.2.2	Design Criteria	7-2
7.3	PUMP STATION	7-6
7.3.1	Frequency Criteria	7-6
7.3.1.1	Design Criteria Assuming Coincidental Events	7-6
7.3.1.2	Design Criteria Assuming Same Event	7-7
7.3.2	Design Criteria	7-7
7.4	GRAVITY OUTLET AND OUTFALL CHANNEL	7-8
7.5	REVIEW PROCESS	7-9

<u>Section</u>		<u>Page</u>
8.0	DRAINAGE DESIGN CRITER FOR RURAL SUBDIVISIONS	8-1
8.1	PURPOSE	8-1
8.2	QUALIFICATIONS	8-1
8.3	DESIGN CRITERIA	8-2
8.4	SUBMITTALS	8-2
8.5	TECHNICAL ANALYSIS OF DETENTION REQUIREMENTS FOR	
	RURAL SUBDIVISIONS	8-4
8.6	ANALYSIS OF RUNOFF VOLUME	8-5
8.7	ANALYSIS OF RUNOFF RATE	8-6
8.8	DETERMINATION OF REQUIRED DETENTION	8-7
9.0	REFERENCES	9-1
Appendix A	Development of Hydrologic Methodology for Fort Bend County, Texas	
Appendix B	Texas Administrative Code Chapter 299 – Dams and Reservoirs	
Appendix C	Development of Pump Station Design Criteria for Fort Bend County, Texas	

LIST OF TABLES

2-1	Point Rainfall Amounts for Varying Durations and Frequencies in Fort Bend County, Texas
2-2	Typical Average Values for Impervious Cover
2-3	Rational Method Runoff Coefficients for 5-10 year Frequency Storms
2-4	Frequency Factor Adjustment
2-5	Excess Rainfall for Computing Runoff Volumes
3-1	Values of the Manning's Roughness Coefficient (n)
3-2	Computation of Composite Roughness Coefficient for Excavated and Natural Channels
3-3	Allowable 25-year Velocities for Channel Design
3-4	Right-of-Way Requirements for Fort Bend County, Texas
4-1	Headwall Guidelines
4-2	Inlet Loss Coefficients Used for Culverts Flowing with Outlet Control
5-1	Rainfall Runoff Curves for Fort Bend County
5-2	Values of the Manning's Roughness Coefficient (n) for Corrugated Metal Pipes
5-3	Coefficients at Structures
5-4	Coefficients for Entrance Losses
6-1	Minimum Detention Requirements for Drainage Areas Less Than 50 Acres
	LIST OF FIGURES
2-1	Effect of Watershed Development on Storm Hydrograph
2-2	Ponding Adjustment Factor for Clarks Storage Coefficient (R) for Fort Bend County, Texas
2-3	Example of Watershed for Determination of Basin Physical Parameters
2-4	25-Year Drainage Area – Discharge Curves for Fort Bend County, Texas
2-5	100-Year Drainage Area – Discharge Curves for Fort Bend County, Texas
2-6	Average Velocities for Estimating Travel Time for Overland Flow for Fort Bend County, Texas
2-7	Rainfall Intensity/Duration Curves for Fort Bend County, Texas
2-8	Malcom's Method of Hydrograph Development
3-1	Nomograph for Solution of Manning's Equation
3-2	Nomograph for Solution of Uniform Flow in Trapezoidal Channels

LIST OF FIGURES (Continued)

3-3	Required Erosion Protection at Channel Confluence
3-4	Typical Backslope Drain Detail for Fort Bend County, Texas
3-5	Typical Storm Sewer Outfall Detail Fort Bend County, Texas
3-6	Typical Bent Detail for C.G.M.P. Outfall for Fort Bend County, Texas
3-7	Typical Bedding and Backfill Detail for C.G.M.P. Outfall for Fort Bend County, Texas
3-8	Recommend Baffle Pier Heights and Allowable Velocities
3-9	Baffled Chute Typical Detail
4-1	Hydraulic Elements of Flow Through a Culvert
5-1	Storm Sewer – Channel Interaction for Fort Bend County, Texas
5-2	Rainfall Runoff Curves for Fort Bend County, Texas
5-3	Undesirable Sheet Flow Patterns for Fort Bend County, Texas
5-4	Acceptable Sheet Flow Patterns for Fort Bend County, Texas
5-5	Typical Roadside Ditch Drain Detail for Fort Bend County, Texas
6-1	Minimum Detention Requirements for Drainage Areas Less Than 50 Acres
7-1-1 –	7-1-16 Brazos River Water Surface Profiles for Fort Bend County, Texas
7-2	Flow/Frequency for Fort Bend County, Texas
7-3	Rainfall/Frequency for Fort Bend County, Texas
8-1	Detention Storage Requirements for Rural Subdivisions
8-2	Comparison of Different Storage Requirements